

FAST4J-Express

Implementation Guide

FAST4J Express Implementation Guide

Introduction... 3

Intended Audience and Document usage.. 3

Framework Overview ... 3

5 Minute Overview .. 3

15 Minute Overview .. 3

Framework Design.. 3

Guiding Principles .. 3

Key Architectural Mechanisms ... 3

Understanding Domain Objects ... 3

Understanding Interfaces, Default Implementations and Factories........................... 3

Framework Usage ... 3

How to Begin... 3

Implementing Interfaces.. 3

Implementing Persistence ... 3

Registering DataAccessObject Implementations .. 3

Implementing Services .. 3

Implementing Commands.. 3

Tying it all together... 3

Framework Extensions.. 3

Dynamically generating PDF Documents from the Database 3

FAST4J-Express Implementation Guide

Page 3 of 32

Introduction

The FAST4J Express Framework is intended to speed up delivery of Custom Java Development

projects. This guide should assist anyone in understanding the proper usage and implementation of

the framework

The term “Express” will be used in this document to indicate the FAST4J Express Framework.

FAST4J-Express Implementation Guide

Page 4 of 32

Intended Audience and Document usage

Anyone who is interested in understanding, using and delivering Custom Development solutions

based on the Express Framework.

The document has been broken up into three main areas, Overview, Design and Usage.

Your Function Document Area of Interest

Management Framework Overview

Design and Architecture Framework Design

Implementation Framework Usage

FAST4J-Express Implementation Guide

Page 5 of 32

Framework Overview

5 Minute Overview

The Express framework was built by Deloitte and is a collection of abstractions, patterns and

design principles that together represent a J2EE Application Framework that can be built upon and

extended. Parts of the framework can be used no matter what size Java project is being built. In its

complete form, the Express framework is designed to be strong enough for small to medium sized

Java projects, yet simple enough for most developers to understand and use in less than 1 day.

The 5 things you need to know about FAST4J Express

Cost

Free to the Project, free to the client. If you need additional support above

and beyond the documentation, this may be available at low or no cost,

depending on the level of support needed. If more robust support is

necessary, you can build in the cost of the person to your project.

Licensing

There should be no licensing issues with using Express on any client

engagement, as it is not dependent on any external software licenses. There

are no issues such as ‘viral licenses’ with which to be concerned.

Feature List

Strong Domain Model

Common Business Objects

Persistence

Services Layer

Presentation Services

Complexity

The Express Framework strives to reduce complexity yet allow the

development team to adapt the software to more complex solutions. It

provides Interfaces and default implementations, that often just need one

or two methods to be provided by the developer.

Support

If the default implementation does not meet the needs of the project, now

or in the future, a feature request can be made to the framework team. In

the meantime, the framework allows you to design and implement your

own solution.

FAST4J-Express Implementation Guide

Page 6 of 32

15 Minute Overview

Since its introduction, the Java solution set and specifically, J2EE has grown to be more complex

than the problems it is meant to address. This complexity has led to confusion and conflicting

“camps” in the industry. Often there is not just one right answer; as a result there are many

ongoing debates, such as:

J2EE Servers versus lighter weight IoC containers

Entity Java Beans versus transparent persistence mechanisms

 Distributed objects versus local calls

 Remote Procedure Calls (RPC) versus Web Services

The core to the Express Framework is a solid architecture, well designed package structure, simple

delivery mechanism and a built in set of features that can be used without modification if it

matches the needs of the project, and in most cases it will.

Many frameworks are in the marketplace and each has its place. Here are some of the reasons why

they might not meet the needs of Deloitte.

Vendor lock-in

IBM, Oracle, BEA all have application frameworks, whereas each might be very

good, they are not portable across environments, if not physically at least

philosophically.

Licensing

There are so many types of licenses (Apache, BSD, GPL, GNU, LGPL). Often

clients will specifically disallow them in the implementations.

Complexity

Many frameworks are more difficult to learn than the value they provide back to the

developers or the project. Framework goals are often around scaling up, not scaling

down, so there is much the project may not need.

Open Source Support

Getting support on Open Source projects can seem difficult and knowing where to

turn can be difficult to determine.

The cumulative effect of Complexity with the unpredictability of Open Source Support serves to

increase project risk. At this point, the project team will typically make the decision to build for the

functionality that might be available elsewhere.

How can the Express Framework overcome these problems for you?

FAST4J-Express Implementation Guide

Page 7 of 32

We demand one simple thing from frameworks

The Time to Learn the Framework “must” be less than

Project Time Savings plus the

Cost Build New Functionality the framework provides and the

Loss of Flexibility.

Sometimes the equation has more of a qualitative aspect to it than quantitative. An example is the

Loss of Flexibility. Just as in making an architectural decision; trade-offs are always necessary.

Often it is too time consuming to elaborate every element of risk, so we make a best-guess

estimate.

The Framework is first and foremost “easy” to use, and does not get in the way of the developers.

The joints between the Framework and Application development code should be seamless, yet the

Framework can be evolved and upgraded later if the project needs it.

Each and every element of functionality in the framework would have to be built into the

application. As a result, there is no extra features and functionality. You will only utilize what you

would have to build anyway. This means you have positive ROI, with the added benefit of having

tested code at the beginning of your project.

FAST4J-Express Implementation Guide

Page 8 of 32

Framework Design

Guiding Principles

The focus of the FAST4J framework is not to replace superior products in the market-place. The

following criteria should be met prior to the construction of framework features.

1. Simple to use and lightweight
2. No acceptable Open Source solution exists
3. Provide alternative solution to a Commercial Product
4. Firm believes feature will yield competitive advantage.

To facilitate an ala-carte deployment strategy,

the Framework will be separated in such a way

that it can be layered together to provide the full

solution.

The Framework will be packaged in a series of

Java Archive Resource(JAR) files that will each

be self contained, with minimal dependencies.

The ExpressCore.jar is the base, to which all

other jars should refer to. No circular

dependencies should exist.

ExpressCore.jar

Core Interfaces, Domain Objects, Utilities and Common Business Objects

ExpressPersistence.jar

 Persistence Interfaces, Persistence Commands, Connection Management, DAO’s

ExpressService.jar

 Service Oriented Architecture Implementation

ExpressPresentation.jar

 Web framework specific implementation

ExpressDocumentation.jar

 JavaDocs as well as this document

ExpressSource.jar

 All source code

FAST4J-Express Implementation Guide

Page 9 of 32

Key Architectural Mechanisms

Continuous Integration

The Framework is under Subversion source control management. All source code and distributions

are available in one location. The repository is monitored by CruiseControl, and when changes are

committed, the automated build process is started. The automated build process will compile the

changes, invoke the JUnits, perform a series of code analysis and coverage tools, and if all is

successful package the application. The final step of the process is to publish the results via Email

and a Web Server, so that anyone can determine the current status of the build.

FAST4J-Express Implementation Guide

Page 10 of 32

Understanding Domain Objects

The key to a well-designed Object Oriented system is a strong Domain Model. To facilitate this

one key aspect of the Express Framework is to strong domain objects.

The Framework defines Domain Objects as an Entity within an Object Oriented system that

provides meaningful access to data and behavior. All useful Domain Objects have two things in

common; they can be identified and they can tell you if they are valid.

Within the Express Framework, the following Interfaces have been identified

Validation Returns a collection of errors based on a specific state

Identification A unique identifier that can be used to reliably identify an object

DomainObject Extends the Validation and Identification contracts

DomainAttribute A business object that describes Domain Objects (eg. SSN)

SimpleObject Objects that only requires Strings for value and description

UUID Universally Unique Identifier

FAST4J-Express Implementation Guide

Page 11 of 32

Understanding Interfaces, Default Implementations and Factories

The implementation strategy is based on three elements

Contract Java Interface

Partial Functionality Java Abstract Class

Implementation Java Class that provides functionality

There are two popular strategies used to implement Object Oriented Frameworks; Interfaces and

Abstract classes. Instead of forcing one versus the other, the Framework blends the strategies. A

useful set of Interfaces have been defined, and where feasible an Abstract implementation

provided.

In many cases the Framework will also provide a Default implementation. This provides basic

functionality that will meet the needs of most projects. If it does not meet the needs of the project,

it will provide an excellent implementation example to be emulated.

FAST4J-Express Implementation Guide

Page 12 of 32

Framework Usage

How to Begin

Getting the Framework

Go to the URL http://www.fast4j.com

Click on the ExpressFramework.jar and download the Jar to your local machine.

FAST4J-Express Implementation Guide

Page 13 of 32

Once you have downloaded ExpressFramework.jar file unpack it using WinZip or the Jar utility.

Move the jars you need into the build path of your current project:

 ExpressCore.jar

 ExpressPersistence.jar

 ExpressPresentation.jar

 ExpressService.jar

Eclipse is used as an example to indicate how you might setup the project using an IDE.

 Setting up your environment

FAST4J-Express Implementation Guide

Page 14 of 32

Implementing Interfaces

Key interfaces have been defined throughout the Framework. In almost every case the Application

can provide the implementation that satisfies the Interface. Often behavior is not specified in the

interface but is implied and understood by implementations. As a result, the Default

implementation should be looked at for a basic understanding of what is implicitly expected by

consumers of the Interface.

Note that extensive JavaDoc has been provided in the code, to facilitate this understanding.

FAST4J-Express Implementation Guide

Page 15 of 32

Implementing Domain Objects

Domain objects are the fundamental building blocks of any Object Oriented system. They

represent the “Entities” from OOA&D. To create one, the developer should extend the

AbstractDomainObject class found in the com.deloitte.common.objects.domain package.

AbstractDomainObject by default provides identification behavior using the concept of an Object

Identifier (OID), also known as a Universally Unique Identifier(UUID).

Once the AbstractDomainObject is extended, the developer can begin to add Application Business

Rules that enable the object to provide functionality.

Business Rules are within the context of Intent, currently there are 5 Validation Intents that have

been defined (None, Read, Update, Delete and Insert). With these intents most forces that act upon

Domain Objects can be covered. Additional Intents can be created an implemented by the

application. Typically this would be needed if the Domain Object has a known state that can be

identified and supplied during validation.

FAST4J-Express Implementation Guide

Page 16 of 32

Here is an example of a simple business object.

package com.deloitte.reference.objects.domain;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;

import com.deloitte.common.interfaces.DomainObject;
import com.deloitte.common.interfaces.Intent;
import com.deloitte.common.objects.domain.AbstractDomainObject;
import com.deloitte.common.objects.framework.Error;
import com.deloitte.common.objects.framework.ValidationIntent;

public class MyDomainObject extends AbstractDomainObject
{
 private Calendar startDate;
 private Calendar endDate;

 public MyDomainObject() { super(); }

 public MyDomainObject(UUID uuid) { super(uuid); }

 public Collection getValidationErrors(Intent intent) {
 Collection theErrors = new ArrayList();
 if (startDate == null || endDate == null)
 {
 theErrors.add(new Error("Start/EndDate must be populated"));
 }
 else if (endDate.before(startDate))
 {
 theErrors.add(new Error("StartDate must be after EndDate"));
 }
 return theErrors;
 }

 public Calendar getEndDate() { return endDate;}
 public Calendar getStartDate() { return startDate;}
 public void setEndDate(Calendar endDate) { this.endDate = endDate;}
 public void setStartDate(Calendar startDate) { this.startDate = startDate;}

 public static void main(String[] args)
 {
 DomainObject theObject = new MyDomainObject();
 Collection theErrors = theObject.getValidationErrors(ValidationIntent.NONE);
 if (theErrors != null && !theErrors.isEmpty())
 {
 System.err.println(theErrors);
 }
 }
}

MyDomainObject has two member variables, StartDate and EndDate. The only rule that we are

implementing is that the End Date can not be before the Start Date.

Constructors

Validation Rules

G/Setters

FAST4J-Express Implementation Guide

Page 17 of 32

Executing this class will yield the following results:

[Start/EndDate must be populated]

If we were to populate the Start Date with (01/01/2005) and the End Date with (12/31/2004), and

re-execute we would get the following message:

[StartDate must be after EndDate]

Lastly, if we were to correctly set the End Date after the start Date, no error messages would be

returned in the Collection, and processing could continue.

Hopefully this illustrates how the basic DomainObject can be used to build a larger more robust

system. In the Implementing Persistence portion of this guide, additional examples will be

provided as to how the DomainObjects can be acted upon by the Persistence Framework to be

moved into and out of a repository such as a relational database.

FAST4J-Express Implementation Guide

Page 18 of 32

Implementing Persistence

The DataAccessObject interface is the primary entry point into the Persistence Layer.

The Framework includes an AbstractDAO to provide the bulk of the behavior necessary to

implement Persistence. Connection and ResultSet handling will be provided and the sub-class

should be focused on the mapping of Objects to the RDBMS.

The following implementation of a DAO is all that is needed to retrieve a DomainObject from the

database.

In the specific example provided only a primary key (OID) will be used to access the object from

the Database. The AbstractDAO will return the OID if it is found in the map provided to the DAO.

package com.deloitte.reference.persistence;

import java.util.Calendar;
import java.util.Map;

import com.deloitte.common.interfaces.DomainObject;
import com.deloitte.common.objects.framework.OID;
import com.deloitte.common.persistence.AbstractDAO;
import com.deloitte.reference.objects.domain.MyDomainObject;

public class MyDomainObjectDAO extends AbstractDAO
{
 protected DomainObject map(Map map) {
 MyDomainObject theObject =

 new MyDomainObject(new OID((String)map.get("OID")));
 theObject.setStartDate((Calendar)map.get("STARTDATE"));
 theObject.setEndDate((Calendar)map.get("ENDDATE"));
 return theObject;
 }

O/R Map Method

FAST4J-Express Implementation Guide

Page 19 of 32

 protected String getSelectStatement(Map theParameters)
 {
 StringBuffer sql =

new StringBuffer("select oid,startdate,enddate from mytable where 1 = 1 ");
 if (theParameters.get("OID") != null)
 {
 sql.append(" and oid = ? ");
 }
 return sql.toString();
 }
}

When performing transactional persistence commands one of the Framework’s Persistence

Commands (Create/Update/DeleteObjectCommand) should be used.

A set of Commands contained within a CommandList will be executed as a Transaction. Either all

will fail, or all will succeed.

There are other DAO implementations provided, one important one to note is the

AbstractXMLDAO implementation which provides the facility to retrieve a Database ResultSet as

an XML Document. See the Extensions for how this might be useful.

SQL Select

Statement

FAST4J-Express Implementation Guide

Page 20 of 32

Registering DataAccessObject Implementations

Each DAO should be registered with the DefaultDAOFactory if the AbstractDAO implementation

is going to be used. This is a simple task, and can be done once for each JVM.

The example provided first tries to get an InitialContext, which would be there if running within a

container, if it is not found, it tries the standalone database connection.

Here is an example Connection Factory

And how to register

This static initializer was taken from MyPersistenceCommands as it would be the entry point into

the Persistence Layer, this can go anywhere as long as the registration occurs before invoking a

subclass of AbstractDAO.

The default registration is to create a new DAO each time one is retrieved from the factory as in

MyReport1. If a singleton pattern is preferable, use the example provided for MyReport1.

FAST4J-Express Implementation Guide

Page 21 of 32

Implementing Services

As many people now use the term “Web Service” interchangeably with Service Oriented

Architecture, we will start with a definition of a Service.

“A Service is an implementation of a well-defined business functionality that operates independent

of the state of any other Service defined within the system. Services have a well- defined set of

interfaces and operate through a pre-defined contract between the client of the Service and the

Service itself.”

Samudra Gupta

Service Oriented Architecture is more a methodology than a concrete implementation of behavior.

The Framework provides several features to facilitate SOA as well as Web Services. One example

is the Service Access Object (SAO). The AbstractSAO handles the underlying intricacies of

retrieving a SOAP Document over Http much the way AbstractDAO shields the developer from

the underlying details of JDBC.

The AbstractSAO will open and close the HttpUrlConnection respond to errors and return the

XML Fragment from the SOAP envelope that the sub-class is interested in.

The DomainObject is defined in this case as a simple Quote that a Web Service will return.

FAST4J-Express Implementation Guide

Page 22 of 32

The URL and Protocol are the ServiceDescription, these are registered in the ServiceFactory.

These are treated much the way DataSources are in the Persistence layer.

The last activity is to subclass the AbstractSAO and create the mapping between the service

response and the DomainObject. This correlates to the DAO implementation from the Persistence

Layer.

SOAP

Request

Parameters

Start of XML

branch

Map values

to Domain

Object

FAST4J-Express Implementation Guide

Page 23 of 32

Test the Service

Output from Execution

Everyone is a prisoner of his own experiences. No one can eliminate prejudices

- just recognize them. Edward R. Murrow (1908 - 1965)

FAST4J-Express Implementation Guide

Page 24 of 32

Implementing Commands

Another strategy for implementing a Service Oriented Architecture is using the Command Pattern.

An interface has been provided as well as several implementations.

FAST4J-Express Implementation Guide

Page 25 of 32

The PersistObjectAbstractCommand implements the Command Interface and allows for

subclassing by the 3 Update Persistence Commands, here is one example.

By instancing the CreateCommandObject using the DomainObject constructor and passing the

Command into a CommandManager, the invoking class needs to know very little about the

implementation details.

Another Command Manager has been provided which is the PersistenceCommandManager, this

was mentioned in the Persistence Section of this document.

FAST4J-Express Implementation Guide

Page 26 of 32

Tying it all together

After creating a MyQuoteDAO, we implement the Select and the Insert methods, the Select can be

referenced in the Persistence Section, here is a snippet of the Insert method

In this Code example, we get 5 quotes from the WebService, create DomainObjects, add them to

the CommandList and invoke the CommandManager to save them all to the database.

FAST4J-Express Implementation Guide

Page 27 of 32

Querying the database, shows the following results

FAST4J-Express Implementation Guide

Page 28 of 32

Framework Extensions

This section addresses a number of items although not directly supported by the Framework can be

easily integrated based on several core features.

Dynamically generating PDF Documents from the Database

As part of W3C Specification for XSL is Formatting Objects (FO), which allows XML to be

rendered into a user specified layout.

Several 3
rd
 party products are available to facilitate this. One example; Apache-FOP, can be used

to format XML into PDF.

Here is a sample design of how the Framework could be used to do this quickly and easily.

In each of the Report classes extending AbstractXMLDAO, the Select statements to product the

ResultSet would be specified. The framework handles collecting the results and rendering it as

XML. The XMLContainer object is a DomainObject that is returned from the DAO. At this point,

applying the XSL-FO instructions is all that is needed to dynamically generate PDFs.

MyReport1.java XML DAO Implementation

FAST4J-Express Implementation Guide

Page 29 of 32

MyReportManager invokes Apache FOP Programmatically
package com.deloitte.extension.reports;

import java.io.*
import java.util.Collections;
import javax.xml.transform.*;
import javax.xml.transform.sax.SAXResult;
import javax.xml.transform.stream.StreamSource;
import org.apache.fop.apps.Driver;
import com.deloitte.common.objects.domain.XMLContainer;
import com.deloitte.common.objects.framework.CheckedApplicationException;
import com.deloitte.common.persistence.*;

public class MyReportManager
{
 private static MyReportManager me;
 private static File baseDir;
 private static File outDir;

 private MyReportManager() { }
 static
 {
 DefaultDAOFactory.register("Report1",new MyConnectionFactory(),new MyReport1());
 DefaultDAOFactory.register("Report2",new MyConnectionFactory(),new MyReport2());

 baseDir = new File(".");
 outDir = new File(baseDir, "out");
 outDir.mkdirs();
 }

 public static void generateReport1() throws CheckedApplicationException
 {
 generateReport("MyReport1",getXml("Report1"));
 }

 public static void generateReport2() throws CheckedApplicationException
 {
 generateReport("MyReport2",getXml("Report2"));
 }

 private static String getXml(String report) throws CheckedApplicationException
 {
 XMLContainer container =
(XMLContainer)DefaultDAOFactory.getInstance().createFor(report).get(Collections.EMPTY_MAP);
 return container.getXml();
 }

 private static void generateReport(String reportName,String input) throws CheckedApplicationException
 {
 File xsltfile = new File(baseDir, "reportformats/" + reportName +".fo");
 File pdffile = new File(outDir, reportName + ".pdf");
 convertXML2PDF(new ByteArrayInputStream(input.getBytes()), xsltfile, pdffile);
 }

 private static void convertXML2PDF(InputStream xml, File xslt, File pdf) throws CheckedApplicationException
 {
 Driver driver = new Driver();
 driver.setRenderer(Driver.RENDER_PDF);

 OutputStream out = null;
 try

FAST4J-Express Implementation Guide

Page 30 of 32

 {
 out = new java.io.FileOutputStream(pdf);
 driver.setOutputStream(out);
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer(new StreamSource(xslt));
 Source src = new StreamSource(xml);
 Result res = new SAXResult(driver.getContentHandler());
 transformer.transform(src, res);
 } catch (IOException e)
 {
 throw new CheckedApplicationException(MyReportManager.class,"Error during Report
Creation",e);
 } catch (TransformerException e)
 {
 throw new CheckedApplicationException(MyReportManager.class,"Error during Report
Creation",e);

 } finally
 {
 try
 {
 out.close();
 } catch (IOException ignoreThis) {}
 }
 }

 public static MyReportManager getInstance()
 {
 if (me == null)
 {
 me = new MyReportManager();
 }
 return me;
 }

 public static void main(String[] args)
 {
 try
 {
 MyReportManager.generateReport1();
 MyReportManager.generateReport2();

 } catch (CheckedApplicationException e)
 {
 e.printStackTrace();
 }
 }
}

FAST4J-Express Implementation Guide

Page 31 of 32

Stylesheet with XSL-FO Formatting Instructions
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="1.0">

<xsl:template match="ResultSet">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>
 <fo:simple-page-master master-name="all"
 page-height="11.5in" page-width="8.5in"
 margin-top="1in" margin-bottom="1in"
 margin-left="0.75in" margin-right="0.75in">
 <fo:region-body margin-top="1in"
 margin-bottom="0.75in"/>
 <fo:region-before extent="0.75in"/>
 <fo:region-after extent="0.5in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="all">
 <fo:flow flow-name="xsl-region-body">
 <fo:block text-align="left">
 Sales Totals By Region Report
 </fo:block>
 <fo:block text-align="left">
 <fo:leader leader-pattern="dots"
 leader-length="2.5in"/>
 <fo:table margin-top="5pt">
 <fo:table-column column-width="1in"/>
 <fo:table-column column-width="1in"/>
 <fo:table-body>
 <xsl:apply-templates select="Row"/>
 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>
</xsl:template>

<xsl:template match="Row">
 <fo:table-row>
 <fo:table-cell>
 <fo:block font-size="12pt"
 font-family="sans-serif">
 <xsl:value-of select="REGION"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block font-size="12pt"
 font-family="sans-serif">
 <xsl:value-of select="AMOUNT"/>
 </fo:block>

FAST4J-Express Implementation Guide

Page 32 of 32

 </fo:table-cell>
 </fo:table-row>
</xsl:template>
</xsl:stylesheet>

Applied to the XML generated from the DAO
<ResultSet>
 <Row>
 <REGION>East</REGION>
 <AMOUNT>40000.00</AMOUNT>
 </Row>
 <Row>
 <REGION>North</REGION>
 <AMOUNT>12000.00</AMOUNT>
 </Row>
 <Row>
 <REGION>South</REGION>
 <AMOUNT>58000.00</AMOUNT>
 </Row>
 <Row>
 <REGION>West</REGION>
 <AMOUNT>60000.00</AMOUNT>
 </Row>
</ResultSet>

The PDF Report

